
Internet Engineering Task Force Scott Kaplan
Service Location Working Group FTP Software Inc.

March 1993
Resource Location Protocol

1. Abstract ...1
2. Status of this memo ...1
3. Introduction ..1

3.1 Requirements ..1
3.2 Related Work ...2
3.3 Overview..2

3.3.1 Major Components ..2
3.3.1.1 User Agent (UA)...2
3.3.1.2 Resource Agent (RA) ...2
3.3.1.3 Binding Broker (BB) ...2

3.3.2 Protocol Operation...3
3.3.2.1 Locating Resources without a BB...3
3.3.2.2 Locating Resources with a BB..3
3.3.2.3 BB<->RA Registration..4

4 Structure of Attribute Information..5
4.1 Resource Location Syntax ...5
4.2 Attribute Functions ...6
4.3 Database Structure ..6
4.4 Authentication ..7
4.5 Access Control...7
4.6 Standard Attribute ..8

4.6.1 Description ..8
4.6.2 Distinguished Attributes ...8

4.6.2.1 Standard resource_type Values ...8
5 Protocol Data Units ..9

5.1 Packet Header ...9
5.1.1 Header Flags...9
5.1.2 Resource Database Cookie ...9

5.2 PDU Data Portion ..9
5.2.1 Locate ...9

5.2.1.1 Description...9
5.2.1.2 Addressing...10
5.2.1.3 Silly Broadcast Algorithm ...10
5.2.1.4 UA Caching..11
5.2.1.5 Distinguished Attributes..11
5.2.1.6 Scaling Issues..11
5.2.1.7 RA Registration..11
5.2.1.8 Request (Multicast) ..12
5.2.1.9 Request (Broadcast) ..12
5.2.1.10 Response...12

5.2.2 Resource Query ..12
5.2.2.1 Description...12
5.2.2.2 Request ...13
5.2.2.3 Response...13

5.2.3 Dictionary Query..13
5.2.3.1 Description...13

5.2.3.2 Request ...13
5.2.3.3 Response...14

5.2.4 Resource Database...14
5.2.4.1 Description...14
5.2.4.2 Request ...14
5.2.4.3 Response...15

5.2.5 DB Admin (Database Add/Database Delete)......................................15
5.2.5.1 Description...15
5.2.5.2 Request ...15
5.2.5.3 Response...15

6. Technical Issues ..15
6.1 Resource Location without a User Interface ...15
6.2 Binding Broker to Binding Broker Protocol..16
6.3 Connections...16

6.3.1 Choosing to implement connection-oriented.......................................16
6.3.2 Negotiating the connection ..16

6.4 Resource Location over IP ...16
6.5 Magic Numbers..17

6.5.1 IANA Registered Numbers...17
6.5.2 Error Values ..17
6.5.3 Enumerations used in PDUs..17

7 Glossary...17
8 Acknowledgments ..18
9 Author's Address..18
10 References...18
11 To Do List ..19

1. Abstract

This document specifies the Resource Location (ResLoc) protocol. The ResLoc protocol allows
a resource to advertise itself on the network. It defines a set of network queries that determines
the location and type of resources available. It defines a mechanism to provide the minimal
configuration information to effectively use that resource. It provides the ability to gather the
advertised information in a central depository (binding broker) to reduce network bandwidth and
allow the protocol to scale to large networks.

2. Status of this memo

This document is an Internet Draft. Internet Drafts are working documents of the Internet
Engineering Task Force (IETF), its Areas, and its Working Groups. Note that other groups may
also distribute working documents as Internet Drafts.
It is available in both ASCII and PostScript formats. The figures are described in PostScript and
are not included with the ASCII version of the document. Copies of the figures are available from
the author. Please respond with comments to the srv-location@apple.com mailing list.
Internet Drafts are draft documents valid for a maximum of six months. Internet Drafts may be
updated, replaced, or obsoleted by other documents at any time. It is not appropriate to use
Internet Drafts as reference material or to cite them other than as a "working draft" or "work in
progress."

S. Kaplan Version 1.0 - Expires September 1993 [2]

Please check the I-D abstract listing contained in each Internet Draft directory to learn the current
status of this or any other Internet Draft.

3. Introduction

The complexity of network administration and configuration is proportional to the number of
clients and resources on the network. To reduce this complexity, ResLoc eliminates the need to
supply configuration information at the client.
The ResLoc protocol provides a means for clients to locate and configure themselves to use
networked resources. The initial requests that the client software makes do not require any
knowledge of the network or the resources on the network. The responses from the resource
agents contain information that the user agent can use to form subsequent requests. In this way,
the client can build a map of all the networked resources or locate a particular resource.

3.1 Requirements
1. No client-side configuration
2. Must scale to large administrative domains (e.g. thousands of clients and hundreds

of resources)
3. Must scale down to small sites of one or just a few networks. That is, resources

and clients in small sites should be trivial to install and configure, albeit at a cost of
increased network bandwidth that would be unacceptable in a larger site.

4. Must not require any knowledge on the part of the user about the network topology
5. What configuration there is should be associated with the resource and it should

reside in only one place in the network.
6. Must support well-known (i.e. globally defined, or standardized) description of

resources as well as site-specific descriptions.
7. The network must minimally support either multicast throughout an internet or

broadcast onto a single physical network. If only broadcast is supported, there
must exist relay agents which forward bootp broadcast from one physical network
to a server on a different physical network.

3.2 Related Work
There are other projects related to locating resources on a network. These include:

•• The Resource Administration Platform at Legato
•• Network Information System+ at Sun
•• X.500 as defined by OSI
•• DNS as defined by RFC1035
•• Banyan's StreetTalk
•• HP/Apollo's Cell Directory Structure
•• Apple's Name Bind Protocol
•• Xerox's Clearinghouse. After all, everything good was done first, then forgotten, at Xerox

3.3 Overview
3.3.1 Major Components

To understand the resource location protocol, it is first necessary to understand the
elements running on hosts in the network that cooperate, using the protocol, to share
resource information.
3.3.1.1 User Agent (UA)

The User Agent (UA) is the software on the client side which is looking for a resource. It
is most likely implemented as a set of functions in a library. These functions can be
called from a user interface program or directly from a program looking for a resource.

S. Kaplan Version 1.0 - Expires September 1993 [3]

The UA is responsible for forming the protocol requests that query the network elements
that have resource information. The UA's most salient feature is that it operates without
configuration information. It learns everything it needs by forming protocol requests.
These protocol requests require no information other than what the UA learned from
responses to previous protocol requests.
3.3.1.2 Resource Agent (RA)

The resource agent (RA) has the authoritative copy of the resource information. A single
RA can have resource information for many resources. The RA is likely to be a process
running on a host in the network.
The RA shares resource information with UAs by responding to protocol requests. The
responses range from simply identifying the RA's network address to detailed information
regarding a particular resource, depending on the protocol request that is received.
There is a specification of the abstract structure of the RA's database. The protocol is
specified with respect to this abstract definition. However, the actual implementation of
the RA database is not defined. The resource database is the only place in the ResLoc
system that authoritative configuration information exists.
3.3.1.3 Binding Broker (BB)

The binding broker (BB) is a place for RAs to register the information in their resource
database. It is a coalesce point for all the RA databases in the network. It provides a
means for the UA to get responses to ResLoc requests without querying multiple RAs.
The BB is likely to be implemented as a process running on a host in the network. The
implementation is probably similar to the RA since it is responding to protocol requests as
a proxy for multiple RAs.
The BB can be thought of as a cache, however, since RAs register with the BB, the UA
can trust responses from the BB as though they had come directly from the RA..
The BB gets all its configuration information from the RA using ResLoc protocol requests.
It does not require any separate configuration.

 <put network architecture picture here>
3.3.2 Protocol Operation

3.3.2.1 Locating Resources without a BB

S. Kaplan Version 1.0 - Expires September 1993 [4]

3.3.2.2 Locating Resources with a BB

S. Kaplan Version 1.0 - Expires September 1993 [5]

3.3.2.3 BB<->RA Registration

S. Kaplan Version 1.0 - Expires September 1993 [6]

4 Structure of Attribute Information

4.1 Resource Location Syntax

<attr expr> ::= <attr template> |
<bool op> <attr expr> <attr expr> |
<not> <attr expr> |

<bool op> ::= <and> | <or>
<and> ::= '&'
<or> ::= '|'
<not> ::= '!"

<attr template> ::= <attr class> <template value> <std attr>
<template value> ::= <cond op> <integer value> |

'=' <string template> |
'=' <attr function>

S. Kaplan Version 1.0 - Expires September 1993 [7]

<string template> ::= <length> [<wild card>] <characters> [<wild card>]
<cond op> ::= '>' | '<' | '=' | '=<' | '>='
<wild card> ::= '*'

<attribute> ::= <attr class> <attr op/value> <std attr> |
<attr op/value> ::= <cond op> <integer value>

'=' <string value>
'=' <attr function>

<attr class> ::= <string value>
<string value> ::= 'S' <string>
<integer value> ::= 'I' <integer>
<attr function> ::= 'F' <string>
<std attr> ::= <boolean>
<boolean> ::= <true> | <false>

<acl> ::= <num users> <user list>
<num users> ::= < 2 octets>
<user list> ::= <user list> ',' <user> | NULL
<user> ::= <string>

<true> ::= '1'
<false> ::= '0'

<string> ::= <length> <characters>
<characters> ::= ?
<length> ::= <octet>
<integer> ::= <4 octet>

<address> ::= <addr type> <length> <value>
<addr type> ::= <2 octets>
<value> ::= <variable number of octets>

• Spaces, tabs, carriage returns, and line feeds are optional (i.e. ignored by the recipient)
and, since they take up bandwidth, are discouraged.

• All string comparisons are caseless.
• <wildcard> matches 0 or more characters.

4.2 Attribute Functions

An attribute can have a function as a value. The RA is responsible for evaluating the function
designated by the class name and using the returned value in evaluating the attribute expression.
The semantics of the function are local to the RA.
The <attr function> is similar to <string value> except that the <string> is generated by the RA,
rather than configured by an administrator. The requester which uses an <attr function> rather
than a <string value>, should know that the value is subject to change rather quickly. An
example of an attribute function is online=yes. In this case, the RA has a piece of code which
determines whether or not the printer is on-line and sets the <attr function> accordingly.

4.3 Database Structure

S. Kaplan Version 1.0 - Expires September 1993 [8]

The ResLoc protocol can be thought of as a method for retrieving data from a network distributed
database. The RAs answer requests by supplying information from their individual databases.
The protocol defines the transactions that allow a client to build a coherent picture of the
distributed data.
To specify the protocol requests which retrieve information from the RA, we specify what the
abstract structure of the database is that the RA is accessing. Note that this does not restrict or
specify how the database is to be implemented. It describes the data and its structure abstractly
so that the protocol can make assumptions about what information is available and how it can be
retrieved.
The RA's attribute database can be thought of as a table of attributes with additional fields of data
for each attribute. The fields of the table are:

Field Description
class

Field Data type
string

data type enum: {STRING | INT}
enumerated type? boolean
value string or integer
standard attribute? boolean
help string string
configuration string string
access control list array of users

For example, the attribute database for the resource agent for a modem might look like this:

Database ACL: ringo(RW), paul(R)

Class Type enum? Value
std
attr? help string config string ACL

"res_type" STRING N "modem" Y "uses phone" "128.127.50.1" john, george
"baud" INT Y 9600 Y NULL "ATS50=6" george
"baud" INT Y 2400 Y NULL "ATS50=3"
"compress" STRING Y "V.42" N NULL "ATS180=2" john
"MNP" INT N 4 N NULL "ATS180=3" john, george

4.4 Authentication

In each request, there is a credential in the header along with a verifier and authentication type.
The responder can chose to authenticate the credential to confirm to its satisfaction that the
credential is true. It is likely that the responder will use the authentication type and verifier to do
the authentication. For example, for DES authentication, the credential might be a user name
and the verifier is the user's password encrypted with a common key.
The RA (and therefore the BB) can chose to keep a list of credentials associated with each
attribute as an access control list. The RA and BB can use the ACL to determine if an attribute is
available for a particular request.

4.5 Access Control

Each attribute in the database has a list of users associated with it. These are the users that can
know about that attribute. The responder must not return information about an attribute that the
requester does not have access to. If there are no users associated with an attribute, then

S. Kaplan Version 1.0 - Expires September 1993 [9]

anyone who has access to the database (see below) has access (i.e. can know about) that
attribute.
The database itself also has an access control list. This list of users can have both read and
write permissions. Database read permission means that a user can know about all the
attributes in the database. Database write permission means that the user can modify the
database (see Database Add/Delete).

4.6 Standard Attribute

4.6.1 Description
Although the protocol does not assume that the dictionary of attribute classes and values
is standardized, it does not preclude standardization. For example, printer vendors might
standardize on certain attribute classes and values to describe printers and ship resource
agents and resource databases with their products.
This would allow vendors which supply client software (e.g. com software that uses
modems, word processing software which uses printers) to generate the attribute
expressions in resource requests. This avoids user interaction where the software
knows what type of resource it needs and can use standard attributes.
The protocol specifies a way for telling the user agent that an attribute is standardized.
Note that the attribute class, value, configuration string and help string must be
standardized in order for the attribute to be considered standard. For example, if type is
a standard attribute class, for resource_type=printer and Helvetica is a standard value,
then the attribute type=Helvetica is a standard attribute (assuming the configuration and
help strings are also standardized).
The RA database includes a field to indicate that an attribute is standardized. A UA can
specify that specific attr templates in an attribute request may only match attributes in the
RA database which are marked as standard. This guarantees that a UA that requires a
standard attribute will get the semantics it desires and will not inadvertently conflict with a
site-specific attribute which happens to syntactically match a standard attribute.
In the example above, an administrator may have configured his/her resources with the
attributes type=postscript or type=PCL5. These attributes would be denoted as non-
standard to avoid confusing them with the (hypothetical) standard attribute type which
refers to a font.

4.6.2 Distinguished Attributes
Although the protocol does not limit the number of distinguished attributes, it is not
currently feasible to have different distinguished attributes and maintain interoperability.
A protocol between binding brokers connecting different administrative domains might
allow this constraint to be relaxed. Until then, this RFC will standardize on the single
distinguished attribute class resource_type.

4.6.2.1 Standard resource_type Values

The following are the legal values for the attribute class, resource_type:
• printer
• modem
• file_server
• name_server
• router
• mail_server

S. Kaplan Version 1.0 - Expires September 1993 [10]

5 Protocol Data Units

5.1 Packet Header
All resource location packets begin with the following header

size
field (octets) value

version 1 1 for now
function 1 LOCATE(1)

RESOURCE (2)
RESOURCE_DATABASE(3)
DATABASE_ADD (4)
DATABASE_DELETE(5)

length 2 bytes, data portion following header
xid 4 generated by sender,

copied into response
error number 2 non-zero if error
flags 1 see explanation
authentication type 1 NO_CRED(0), NO_VERIFY(1),

DES(2), KERBEROS(3)
resource database cookie 2 see explanation
sender's address variable <address>
credential variable <string>
verifier variable <string>

5.1.1 Header Flags

Value Name Description

0x01 response overflowed Indicates that the response did not fit in
a datagram. See Connections section

5.1.2 Resource Database Cookie
The magic cookie is a token passed back by the responder. It is an indication of the
state of the responder's database. The cookie is opaque to the requester. All the
requester knows is that when the responder's database is modified, the cookie will be
changed. The requester should cache the cookie along with any other information which
is cached in order to know when to request a cache update.
BBs and RAs must not use '0' for a cookie value.

5.2 PDU Data Portion

5.2.1 Locate

5.2.1.1 Description

Both BBs and RAs need to be located. There are three cases:

• Before the UA makes its first request, it tries to locate a BB, if it fails to locate a
BB, it tries to locate multiple RAs

S. Kaplan Version 1.0 - Expires September 1993 [11]

• When a BB comes up, it locates RAs to announce that it is up and the RAs need
to register.

• When an RA comes up, it locates a BB to register with. The RA sends its
database (using Database Transfer). It is the RA's responsibility to keep track of
all BBs that respond to the locate request and to send its database to each.

5.2.1.2 Addressing

Each of the requests above can be either broadcast or multicast in accordance with the
following protocol. The terms should and may are used as in RFC1122 and RFC1123.

• The requester should first multicast
• If the requester doesn't get an answer, then it may broadcast.
• The requester may cache the fact that it did not receive an answer to the

multicast if it subsequently received an answer to its broadcast.
• The requester may assume that multicast is not implemented in its domain. The

requester may then skip sending multicasts for some long period of time.

The broadcast packet is a modified bootp packet so that it can be passed across a
router. The BBs and RAs must be able to accept bootp packets on the bootp port.

5.2.1.3 Silly Broadcast Algorithm

Because both broadcast and multicast are datagram based and create multiple
responses, the protocol must address the issue of collecting multiple responses reliably.
To find multiple entities:

1) set num_addresses = 0
1) broadcast the locate request
2) add the addresses of all respondents to the next locate request
3) Continue step #2 until the requester doesn't get any more answers

In addition to specifying which addresses you do not want to respond, you can also
specify individual resources that you do not want to locate. So the algorithm that a
binding broker and/or resource agent should use in deciding to respond to a locate
request is:

Condition Response

num addresses > 0 all resources

num addresses > 0
your address is not on the address list

all resources

num addresses > 0
your address is on the address list
num resources > 0

any resources whose ids are not on the
resources list, or whose database cookies are
different than the one in the request

The requester can use the locate query to refresh its cache with new resource that have
appeared on the network or existing resources whose database have changed. It puts
the resource address that it knows about and database cookie in the request and
broadcasts. Note that this will not tell it about RAs or BBs that have disappeared from
the network. So the implementation should be robust about discarding cache entries that
do not respond to subsequent requests.

S. Kaplan Version 1.0 - Expires September 1993 [12]

5.2.1.4 UA Caching

UA may cache attribute information, specifically, it should maintain a cache mapping
distinguished attributes to the address of the RA which supports that distinguished
attribute. This cache information needs to timeout. The UA should timeout the entire
cache. It can form a locate request with the RA address and resource id for each
distinguished attribute in the cache. This means that the UA can update the cache with a
single broadcast. RAs which receive the locate request should only respond if they have
a resource which is not specified in the locate request or if the database cookie has
changed. Note that this allows the UA to learn about new resources. However, it will not
learn about resources or RAs which have disappeared from the network. Therefore, the
UA must be robust if it doesn't get an answer from a resource. After a retry, the UA may
chose to delete the distinguished attribute/address mapping from its cache. If this was a
mistake or if the resource reappears on the net, the UA will learn about it the next time it
updates its cache.

5.2.1.5 Distinguished Attributes

In addition to the address, the requester can request high-level resource information
about the responder's resources. By setting the DIST_ATTR bit in flags, the requester
asks the responders to includes a list of the distinguished attributes along with the
resource ids.
There may be more than 1 distinguished attribute, but all resources in a domain must
have the same number of distinguished attributes.

5.2.1.6 Scaling Issues

The silly broadcast algorithm scales until there are more resource agents than there is
room in the locate request for the addresses and resource ids. Each IP address takes 7
octets plus one to indicate that we are not specifying resource ids (num resources = 0).
The packet overhead is 16 octets (minimum) for the header and 5 octets for the fixed
data portion. This means that a locate request can hold, at most, addresses for 69 RAs.
This broadcast re transmission algorithm is only necessary if the UA does not find a BB
on the network. The solution for a network with more than 69 RAs is to install a BB.

5.2.1.7 RA Registration

When an RA comes up, it broadcasts a locate request with the responder set to BB. Any
BB on the network must unicast a locate reply. num distinguished attrs and num
resource addresses must be set to 0 in the locate reply. The RA then sends a resource
database reply with its database. The BB can choose to retransmit if it doesn't receive a
database from an RA that it received a broadcast from.
When the BB comes up, it broadcasts a locate request with the responder set to RA.
Any RA which receives the broadcast must send a locate response with num
distinguished attrs and num resource addresses set to 0. The BB sends a resource
database request and the RA sends it database in the resource database reply. The RA
must timeout and resend the locate response if it doesn't receive a resource database
request. Since the BB broadcasts to a potentially large number of RAs, it might be
flooded with locate responses. The RAs should backoff and retransmit to allow the BB to
collect the addressees of all the RAs.

S. Kaplan Version 1.0 - Expires September 1993 [13]

5.2.1.8 Request (Multicast)

size
field (octets) data type or value
responder type 1/2 RA(2), BB(3)
requester type 1/2 UA(1), RA(2), BB(3)
requester port 2
flags 1 DIST_ATTRS(0x1)
number of addresses 1
for each address:

resource address variable <address>
resource DB cookie 2
num resources
for each resource:

resource id 2

5.2.1.9 Request (Broadcast)

The broadcast-based request is a bootp request. There is a single option set:
option XXX (ResLoc Locate Request)
<XXX> <octets>

The format for <octets> is the ResLoc header followed by the data portion as specified
for a multicast locate request.

5.2.1.10 Response

size
field (octets) data type or value
responder type 1 RA(2), BB(3)
num distinguished attrs 1
num resource addresses 2

resource address variable <address>
resource DB cookie 2
num resources 2
for each resource

resource id 2
for each dist attr
 dist attr variable <attribute>

5.2.2 Resource Query

5.2.2.1 Description

The resource request contains a boolean expression of attributes which describes the
characteristics of the resource that the UA wants. An RA or BB responds to a resource
request to indicate that it has a resource whose attributes satisfy the boolean expression
and responds with the list of attributes that make the boolean expression true. This
allows the user to describe the resource that they need. The user then selects the
resource which best meets their need by reviewing the attributes which satisfy the
request

The UA puts a predicate in the packet and sends it to the RA or BB. The UA should
cache the addresses and distinguished attributes found via the locate query. The UA

S. Kaplan Version 1.0 - Expires September 1993 [14]

should scan the predicate in the resource query for distinguished attributes in order to
determine which RA to send the resource request to. There are cases where the UA will
be unable to limit the set of resources that should receive the request. The UA may then
broadcast the resource request. However, since the distinguished attributes form a high-
level taxonomy for resources, most resource requests will contain one and only one
distinguished attribute which the UA should use for addressing.

For resource responses from a BB, there can be multiple resource addresses,
corresponding to the various RAs registered at the BB. The response will specify the
resource address of the RA which registered that resource at the BB.

5.2.2.2 Request

size
field (octets) data type or value
predicate variable <attr expr>

5.2.2.3 Response

size
field (octets) data type or value
num resource addresses 2
for each resource address:

resource address variable <address>
for each resource:

resource id 2
num matched attrs 2
for each attribute variable <attribute>

5.2.3 Dictionary Query

5.2.3.1 Description

A requester uses the dictionary query to get the list of values for a particular attribute
class.
A dictionary is similar to a list of attributes. Where a list of attributes is a list of the form
(class, value), a dictionary is of the form (class, (set of values)). The dictionary provides
the terms necessary to build the predicate in a resource request.
The dictionary query can get the values for a single attribute at a single resource or get
the entire dictionary for all resources at an RA or BB. A requester can get a dictionary
for specific set of resources by setting the resource address (if sent to a BB) and the
resource ids that should respond. If no resource addresses or ids are specified, all
resources are selected.
The requester can also specify the attribute classes that it want the values for.
The dictionary response does not include any resource addresses or ids. The purpose of
the dictionary query is not to address resources. The requester should take the
dictionary it gets back and form a resource request to locate the resource.

5.2.3.2 Request

size
field (octets) data type or value
num resource addresses 2

S. Kaplan Version 1.0 - Expires September 1993 [15]

for each address:
num resource ids 2
for each resource: 2 resource id

num attribute classes 2
for each attribute class

attribute class variable <string value>

5.2.3.3 Response

size
field (octets) data type or value
num attribute classes 2
for each attribute class:

attribute class variable <string value>
enumerated type? 1 TRUE(1), FALSE(0)
data type 1 STRING(1), INT(2),

ATTR_FUNC(3)
num attr values 2
for each attribute value:

standard attr? 1 TRUE(1), FALSE(0)
value variable <integer value> |

<string value>

5.2.4 Resource Database

5.2.4.1 Description

The resource database query transfers information from the attribute database at an RA
or BB. It is not used for locating resources. It is used after a resource has been located
(resource address and id). Then the resource database query gets additional attribute
information.
The requester specifies which attributes it want additional information for by specifying
the class name and value for the attribute. The requester can specify a '*' as a value.
The responder will then supply the specified fields for all attributes that have the specified
class name.
The requester sets a bit mask to specify which fields the responder should return in the
response. The fields are returned in the response in the order of the bits in the bit mask

5.2.4.2 Request

size
field (octets) data type or value
num resource addresses 2
for each address:

num resource ids 2
for each resource: 2

resource id 2
num attributes 2
for each attribute:
 class name variable <string>
 value variable <integer value> |

<string value> |

S. Kaplan Version 1.0 - Expires September 1993 [16]

'*'
fields requested 2 ENUM?(0x01)

STD_ATTR?(0x02)
HELP_STR(0x04)
CONFIG_STR(0x08)
ACL(0x10)

5.2.4.3 Response

size
field (octets) data type or value
num resource addresses 2
for each address:

num resource ids 2
for each resource: 2

resource id 2
attribute variable <attribute>
enumeration 1 FALSE(0), TRUE(1)
standard attribute 1 FALSE(0), TRUE(1)
num info strings 2
for each info string: variable <string>
num help strings 2
for each help string: variable <string>
access control list variable <acl>

5.2.5 DB Admin (Database Add/Database Delete)

5.2.5.1 Description

These PDUs are used to remotely administer an RA's database. It pushes information
into the database. It is not used for an RA to register with a BB. The registration
happens when the BB requests a copy of the RA's database using the resource
database PDU.
The database administration PDU is used to inject the resource information into the
ResLoc system. It should be sent from an administration station to an RA since the RA
has the authoritative information.

5.2.5.2 Request

The Database Add request uses the same PDU as the Resource Database response.
The Database Delete request uses the same PDU as the Resource Database request.
Whatever database entries would be returned by the Resource Database request are
deleted from the database.

5.2.5.3 Response

Neither the Database Add nor Database Delete responses have a data section. The
relevant information (specifically, the error code) is in the header

6. Technical Issues

6.1 Resource Location without a User Interface
Attribute classes and values are meant to be self-describing strings and values. This assumes a
user interface and human interpreter. However, it is possible for client software to use the

S. Kaplan Version 1.0 - Expires September 1993 [17]

ResLoc protocol without a user interface. This requires a priori knowledge of the attribute
classes and values in the administrative domain. This presupposes that either these dictionary
terms have been standardized or that a vendor's client software is using a proprietary dictionary
to locate its own resource. An example of this is a gethostbyname library which finds a DNS
server by forming a resource request with the predicate:

resource_type = "DNS_server" <standard attribute>

Normally, to collect the information to form this request, the UA first sends a locate request to
find the RA for the DNS server, followed by one or more database get requests (to learn about
the attribute class resource_type and the value DNS_server). If the UA already has these
symbols, it can form the predicate without the database get request. If it broadcasts the resource
request, it does not need the locate request.
Note that there is no provision for the UA being inundated with responses to a broadcast
resource request as there is for locate requests. So the UA which broadcasts a resource request
should be prepared to get answers from a subset of the resource agents.

6.2 Binding Broker to Binding Broker Protocol
UAs in one administrative domain can access resources in another administrative domain. The
details of how two binding brokers share information will be specified in a future RFC. Until then,
users will be unable to access RAs in other administrative domains. The administrative domain
is defined by the bootp perimeter.

6.3 Connections
A requester may receive a response with the response overflow field set. This indicates that the
responder couldn't fit all the information in a single datagram. It indicates that the responder is
willing to establish a connection with the requester.

6.3.1 Choosing to implement connection-oriented
Only BBs are required to support connections. RAs and UAs may only support datagrams. This
is in keeping with a desire to use RAs and UAs in embedded systems. Note that if the RA does
not support connections, it should not set the response overflow field. This emphasizes the
importance of the design decision to not implement connection-oriented in an RA. If the
implementer does not implement connection-oriented, he/she must be able to guarantee that the
packet will not overflow. The UA should not have to decide how to react to receiving an
indication that it has partial information (i.e. response overflowed), yet no means to get the
missing information. Therefore, the protocol puts the burden on the RA developer who has the
information to make sure that either:

1. the information fits in a datagram
2. there is a means to get additional information (i.e. connection)
3. the RA will act as though the information which did fit is complete.

6.3.2 Negotiating the connection

The requester should resend the request on the well know connection-oriented port. The
responder transmits the entire response, including the initial portion already sent. This wastes
some bandwidth and processing at the responder. However, it means the responder doesn't
have to keep an arbitrarily large amount of state and uses existing PDUs.

6.4 Resource Location over IP

S. Kaplan Version 1.0 - Expires September 1993 [18]

IP networks have enough functions to support resource location. Addressing is done by setting
the address type to 0x0800. Note that this is the same identifier in the DIX Ethernet type field.
The address length is 4 for IPv4. The address contains the 4 octet IP address.
Broadcast is accomplished using IP broadcast. The protocol only requires the ability to
broadcast on a single physical network. So the broadcast should not be an internet-wide
broadcast (all 1's), but rather only the host portion should be set to 1's.
The requester can chose to use multicast to locate RAs and BBs.

6.5 Magic Numbers
The following are the fields which require magic numbers. The values defined in this document
are repeated here for convenience.

6.5.1 IANA Registered Numbers

section(s) description value meaning IANA Registered?
bootp port num already done

6.4 address type 0x0800 IP already done
6.4 RA port number
6.4 BB port number
5.2.1.2 multicast address

6.5.2 Error Values

This section will be completed at a later date.
field value meaning
ENOERROR 0 All's well
ENOAUTH 1 The authentication information was rejected

6.5.3 Enumerations used in PDUs
section(s) field value meaning
5.1 function 1 LOCATE

2 RESOURCE
3 RESOURCE_DATABASE
4 DATABASE_ADD
5 DATABASE_DELETE

5.1 all booleans 0 FALSE
5.2.3.3 1 TRUE
5.2.4.2
5.1 authentication type 0 NO_CRED

1 NO_VERIFY
2 DES
3 KERBEROS

5.2.1.7 type of process 1 UA
5.2.1.9 2 RA

3 BB
5.2.3.2 data requested 1 ATTRS_ONLY
5.2.4.2 2 DICTIONARY

3 ALL_ATTR_INFO

7 Glossary

S. Kaplan Version 1.0 - Expires September 1993 [19]

Resource agent (RA) A process which responds to queries with information about a
resource.

User agent (UA) The process (or library within a process) which forms network
requests and receives the responses from the resource agents

Binding Broker (BB) A process which collects information from, and proxies for,
resource agents

Attribute A description of some characteristic of a resource. An attribute
is made up of an attribute class and an attribute value. The
attribute class describes a category of attributes, e.g. speed,
location, cost. The attribute value specifies the value for a given
attribute class, e.g. location = room_8.

Standard Attribute An attribute with a particular semantic that was defined out-of-
band to the ResLoc protocol.

Distinguished Attribute All resources must have at least one attribute class in common.
This attribute class as well as its value is distinguished. To
bootstrap a client that does not have any configuration, it first
determines the distinguished attribute. Therefore, the
distinguished attribute defines the high-level taxonomy for the
resources.

Administrative Domain All the RAs that register with a single BB. Since the RAs and
UAs use bootp packets to locate a BB, the administrative
domain is defined by the bootp radius.

Dictionary All the terms (attribute classes and enumerated values) used to
form attributes in a resource agent's database.

Requester A UA, RA, or BB which sends a request PDU in order to get
some information

Responder A UA, RA, or BB which send back the answer to a request (i.e. a
response)

8 Acknowledgments

Leo McLaughlin (FTP), Mike Ritter (Apple) and John Veizades (Apple) have all provided
enormous technical contributions by reviewing both the design, implementation, and
standardization of ResLoc. Bala Krishnaswamy (FTP), Nirmalkumar Samuel (FTP), and Derek
Brown (FTP) took the initial design and shaped it into a working prototype. Nirmal and Ben Levy
(FTP) reviewed the Internet Draft and produced the first implementation.

9 Author's Address

Scott Kaplan (scott@ftp.com)
FTP Software Inc., West Coast Operations
785 Market Street, 12th Floor
San Francisco, CA 94103
(415) 543-9001

10 References

M. Acetta. Resource Location Protocol. RFC 887, NIC, December 1983.

Legato Systems, The Legato Resource Administration Platform, Legato Systems, 1991.

S. Kaplan Version 1.0 - Expires September 1993 [20]

C. McManis and R. Rom, The Zeus Name Service Architecture, Sun Microsystems, 1990.

S. Dyer, The Hesiod Name Server, Winter Usenix Conference, pp. 183-187, Feb 1988.

D. Oppen and Y. Dalal, The Clearinghouse: A Decentralized Agent for Locating Named Objects
in a Distributed Environment," Tech. Rep. OPD-78103, Xerox Office Products Division,
1981.

B. Lampson, Designing a Global Name Service, Proceedings of the 5th ACM Symposium on
Principles of Distributed Computing, pp. 1-10, 1986.

D. Cheriton and T. Mann, Uniform Access to Distributed Name Interpretations in the V-system.

Sun Microsystems, Remote Procedure Call Programming Guide, 1990.

Sun Microsystems, External Data Representation: Sun Technical Notes, 1990.

R. Droms. Dynamic Host Configuration Protocol. RFC Draft, NIC, 1991

B. Croft and J. Gilmore. Bootstrap Protocol (BOOTP). RFC 951, NIC, September 1985

P. Prindevill. BOOTP Vendor Information Extensions. RFC 1048, NIC February 1988.

J. Reynolds. BOOTP Vendor Information Extensions. RFC 1084, NIC, December 1988.

W. Wimer. Clarifications and Extensions for the Bootstrap Protocol. Internet Draft, NIC, 1991.

S. Deering. Router Discover Protocol. RFC 1256, NIC 1991.

P. Mockapetris. Domain Names - Concepts and Facilities. RFC 1034, NIC, November 1987

P. Mockapetris. Domain Names - Implementation and Specification. RFC 1035, NIC. November
1987

11 To Do List
1) How does a bootp gateway separate ResLoc requests from bootp requests?
2) We are hiding locates in bootp packets to deal with the case of multiple subnets

with no binding broker. Is this a problem we need to solve?
3) Need to define <characters> in BNF
4) make the tables into real WinWord tables

5) generate ASCII text format
6) need port assignments for RA and BB in the ResLoc over IP section
7) put network architecture diagram in Overview section
8) get more examples for distinguished attribute values (section 6.1.3) from

Mockapetris RFC for WKS values
9) What do we use for address type?
10) Is READ permission on attributes and READ/WRITE permission on the database

sufficient access control?
11) What's a user?

S. Kaplan Version 1.0 - Expires September 1993 [21]

